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1. Introduction 

The symmetry group of  special relativistic theories, the Poincar6 group, 
was imposed on physical theories to mirror the symmetries of  the laws of  
nature under point mappings of  the presumed Minkowskian space-time, 
thought to be the arena of physics. With the advent of the general theory of  
relativity the equations of  the gravitational field were constructed so as to be 
invariant under arbitrary curvilinear point transformations of the space- 
time, now taken to be a four-dimensional pseudo-Riemannian manifold. 
Although the dynamical laws of  all general relativistic theories are taken to 
have this enlarged symmetry group, the geometry of any particular space- 
time on which all the fields are defined no longer has this symmetry. In fact, 
in order to facilitate handling &the  field equations of general relativity, it is 
often convenient to exploit the lack of symmetry of generic space-times to 
impose coordinate conditions upon the field variables, the metric tensor of 
the space-time. 

The coordinate transformations leading to the preferred frames of 
reference in which the coordinate conditions are satisfied, or which preserve 
those conditions, in so far as they involve specific reference to the metric of  
the space-time, are best understood, not so much as point mappings 
within a given four dimensional space-time, but rather as mappings within 
the function space of the field variables of  the theory, guv(x~). (Greek indices 
are taken to range from 0 to 3, while Latin indices range from 1 to 3.) The 
general theory of  relativity is thus seen to have a much larger natural 
symmetry group than was initially contemplated, namely transformations 
of the form 

2 ~ = f~(x~ ,  gm(x~)) (1.1) 
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16 PETER G. BERGMANN AND ARTHUR KOMAR 

with 2 ~ considered functionals of the whole metric field gu~(x~). The space- 
time point mappings, transformations of the form 

X = =f~(x~) (1.2) 

evidently form a subgroup (although not a normal subgroup). 
In the pursuit of a quantum theory of gravitation many researchers have 

attempted to cast the equations of general relativity into a Hamiltonian 
form. The Hamiltonian of the theory would have to propagate the initial 
data forward in the (arbitrarily chosen) 'time' direction, and in general 
provide a realization of the transformation group of the theory. In contrast 
to all other physical theories, the dynamical laws of general-relativistic 
theories cannot be separated in any satisfactory manner from the symmetry 
group. The groups of either equations (1.1) or (1.2) have proved to be 
particularly intractable to such an approach. Employing a radically new 
approach Dirac (1958, 1959) finally succeeded in constructing a Hamiltonian 
version of the general theory of relativity, wherein both the evolution of the 
solution throughout the space-time and its symmetry group are realized by 
the unfolding of a canonical transformation in the phase space of the theory, 
generated by Hamiltonian functionals. However, this group is isomophic 
neither to that of equations (1.1) or (1.2). A principal purpose of this paper 
is to elucidate the relationship between these three groups associated with 
the general theory of relativity. 

In Dirac's formulation of the general theory of relativity, infinitesimal 
coordinate transformations are generated by integrals over a space-like 
three-dimensional surface, whose integrands are the 'Hamiltonian 
constraints' JCf,, YFL, multiplied by coefficients, the so-called descriptors, 
which represent, respectively, the magnitude of the time-like displacement 
normal to the space-like surface, and the infinitesimal coordinate trans- 
formations within the surface itself. The commutator algebra of the 
infinitesimal group of coordinate transformations is obtained simply by 
means of the Poisson brackets between the generators, and these are 
themselves generators of infinitesimal coordinate transformations. Re- 
markably, the descriptors of the commutator are independent of the 
derivatives of the original descriptors normal to the surface; otherwise the 
canonical procedure would fail. On the other hand, it is well known that the 
Lie derivative of the displacement vector, representing an infinitesimal 
coordinate transformation (or an infinitesimal mapping) with respect to 
another displacement vector, in general involves derivatives off the initial 
hypersurface, a fact that appears to foreclose the representation of the 
commutator algebra in terms of functions, or functionals, restricted to a 
three-dimensional domain. This apparent paradox will be resolved in this 
paper. 

The need to clarify the relationship between the above three symmetry 
groups arises in part from the effort to find the observables of gravitation 
theory, that is, the functionals of the field variables that are invariant under 
space-time mappings. In our view such observables are required if one is to 
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construct a quantum theory of gravitation. As there are three distinct 
symmetry groups that might be realized by space-time mappings, it would 
appear that we could have three different criteria for selecting observables 
('gauge-invariant' variables), namely those functionals of the field variables 
that are invariant under the three groups, respectively. We shall show that 
all three groups act transitively within a given four-dimensional space-time 
manifold. (For the groups defined by equations (1.1) and (1.2) this fact is 
obvious. The principal work will be to ascertain this fact for the canonical 
group of Dirac.) As a consequence of this result, it follows that the invariants 
of the above three groups will, in the intended realizations of these groups 
as transformation groups of a four-dimensional Riemann manifold, yield 
equivalent sets of observables. 

In addition this paper will make precise the assertion that in general 
relativity the identity of a world point is not preserved under the theory's 
widest invariance group. This assertion forms the basis for the conjecture 
that some physical theory of the future may teach us how to dispense with 
world points as the ultimate constituents of space-time altogether. A 
similar conjecture has been made, independently, by R. Penrose (1968). 

2. The Infinitesimal Groups 

Under the action of an infinitesimal coordinate transformation by a 
vector field ~P 

3xP - 2 p - x p = ~P (2.1) 

the metric tensor, guv(xP), transforms so that its functional dependence on 
the coordinates changes as follows 

3g.v =- ~t~(xO) - gu~(x ~ = -(~:~,;~ + f~;~,) (2.2) 

The infinitesimal descriptor ~:P for the transformations of the function space, 
equation (1.1), is an arbitrary functional of the metric (as well as a function 
of the coordinate); i.e. 

~P = ~P(x ~, gu~(2 p) (2.3) 

The infinitesimal descriptor for a member of the subgroup of the space-time 
point mappings, equation (1.2), is not a functional of the metric tensor, but 
only a function of x ~, 

~:P = ~:~ (2.4) 

The distinction between these two situations becomes critical when we seek 
to determine the commutator of two transformations described, respectively, 
by ~:l p and ~:z p. For the familiar group of space-time transformations, that 
is for descriptors of the form equation (2.4), the descriptor of the com- 
mutator is the usual Lie derivative of the two vector fields. That is 

~cp = ~1o, , ~ 2  ~ - ~2o, ,~1"  (2.5) 
2 
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In the more general case the commutator must be determined via the more 
involved expressions obtained by performing the indicated transformations 
in the function space. Thus 

( " L ~g~tJ~, x ) ~ o,g~tjI, x )] (2.6) 3gu,(x) = 

where 3~guv denotes the set of expressions obtained from equation (2.2) by 
employing the relevant descriptor, ~:0. For the special case of equation (2.4), 
equation (2.6) reduces to a relation equivalent to equation (2.5). 

Dirac's canonical version of general relativity employs as the con- 
figuration variables the spatial portion of the metric, determined on a 
x~  constant space-like hypersurface, g,,,(xS). The canonically conjugate 
momenta are found to be 

Pmn(Xs) = �89 gat~ 11/2 (g00)i/2 ( e "  e "~ -- e"" e "~) (g,~.o -- go,[~ -- go~l,) (2.7) 

where 
ernn ~ gmn __ gOm gOn gOO (2.8) 

is the reciprocal of the spatial metric gmn, with respect to which all indices 
are raised and lowered; the vertical bar subscript denotes covariant dif- 
ferentiation with respect to that three-metric. The canonical momenta are 
not independent of the metric and of each other. They are related by the four 
constraints 

~/g~s(x) -= -2p~ (x),, = 0 (2.9) 

j ,~L(X) =. [gmn[-1/2(gmr(X)gns(X) --�89 + 

+ Ig,,.(x)ll/Z3R(x) = 0 (2 .10)  

where 3R is the three-dimensional Ricci scalar formed from the gm.. 
These constraints now form the generator of the infinitesimal canonical 

transformation equivalent to the infinitesimal coordinate transformation, 
equation (2.1), on the phase space; thus 

- ~ ( $ ~ x  + ~L~L)d3 H(~:) (2.11) X 

where 

V,(g0O ) (2.12) 

or, equivalently, 

1 
= _ _  V(g ~176 

- ~ 6  ~ (2.13) 
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In order to obtain the Hamiltonian of  the theory, or equivalently the 
generator of  transformations in the 'time' direction, the required descriptor 
is ~v = 80 p, or equivalently, from equation (2.13), 

1 

V(g ~176 
gOs 

~" --- - ~ 6  = + g0,, emS (2.14) 

These expressions are to be inserted into equation (2.11). 
Dirac's constraints, equations (2.9) and (2.10), are first-class. That is, 

their Poisson brackets can be expressed as linear combinations of  the 
constraints themselves. The question arises whether their commutator 
algebra corresponds to some group of  interest, say some subgroup of the 
group of  curvilinear coordinate transformations. As stated in this vague 
fashion, it is of  course not a well posed problem, for at this point we have 
neither made clear whether and in what fashion we intend to regard 
descriptors as functions of  the dynamical variables, nor have we specified 
whether by the group of curvilinear coordinate transformations we are to 
understand the group of  point mappings in the space-time, described by 
equation (1.2), or the function space mappings, described by equation (1.1). 

In equation (2.11), let us regard the coefficients ~s and ~L as arbitrary 
functionals of  the canonical variables; thus 

~'(x9 -= ~(x ~ gm~, P") 
$L(x") -- $L(x", gm, , f fO (2.15) 

(It follows from equation (2.12) that the dynamical variables enter into the 
descriptors ~0 in a somewhat restricted fashion.) Similarly let us define two 
further sets of descriptors ,/0 and/z0. Then we assert 

[H(r H(B)] = H(/,) (2.16) 

where/2 s,/2 L are related to the ~- and ~-functionals thus: 

~(x)  = ~S(x)., ~'(x) - ~'(x)., ~'(x) + e~t(x) W(x)~(x) . ,  - ~ (x)  re(x).,) + 

+ f d 3 y(~qt(y) [~S(x), d/gat(y)] + glL(y) [~*(X), d/g~ -- 

_ ~t(y) [Of(x), a(ft(y)] - ~L(y) [qS(x), a(fL(y)]) (2.17a) 

~zL(X) = ~S(x) ~L(X),s -- ~]S(x) ~L(X),s + f d3 y (~It(Y) [~L(X), Jb'~ + 

+  L(y) ffL(x), x 2 ( y ) ]  - a G ( y ) ]  - 
_ ~L(y) [~r.(x), JlL(y)])  (2.17b) 

The proof  of  this result merely requires straight-forward but tedious 
computations. The only point worth mentioning is that in the course of the 
computation one discards terms proportional to the square of  the con- 
straints. This is because of the manifold of  solutions of  the constraint 
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equations such terms cannot alter the algebra. (We need not cheek for 
Jacobi identities, for these follow automatically for Poisson brackets.) 

We have therefore shown that the phase space functionals H(s ~) generate 
the Lie algebra of a subgroup of the full function-space group of coordinate 
transformations. In a later section we shall characterize this group in a more 
geometric fashion. Our conclusion will be that it is indeed a proper subgroup 
of the function space group (although not a normal subgroup). 
_ By inspection of equation (2.17a) it is clear that the descriptors for which 
~(x), ~L(x) are independent of the canonical variables do not form a closed 
subalgebra of the above subgroup. 

It remains to investigate whether the subgroup of space-time point 
mappings, equation (1.2), can be recovered as a st/bgroup of the phase-space 
group generated by H(~). We shall now show that this is not the case. (In 
view of the fact that the space-time point mappings evidently form a 
subgroup of the group of function space mappings, it will immediately 
provide an alternative proof that the phase-space group is aproper subgroup 
of the function space group.) 

The Lie algebra of the group of point mappings in space-time is charac- 
terized by those descriptors, ~P, which are independent of the dynamical 
variables. Thus for the point mappings, equation (2.4), ~ and ~L can depend 
on the canonical variables alone only if the gp0 in turn depend on the 
canonical variables [el. equation (2.13)]. As the components gOO are not 
themselves canonical variables, to make them depend on the canonical 
variables amounts to the imposition of a species of coordinate conditions. 
Hence, it is appropriate to inquire whether coordinate conditions of the 

f o r m  
gO~ -- g~176 gm,,pr~) (2.18) 

can be found for which descriptors of the type equation (2.13) form a 
closed algebra such that (a) the property that ~P does not depend on the 
canonical variables is preserved, and that (b) the Lie algebra of the trans- 
formations generated is consistent with the Lie derivative of the descriptors, 
equation (2.5). 

Substituting relations for ~P and ~/P corresponding to equation (2.13) into 
equations (2.17) and equating to zero all terms that would compel/zP to 
depend on the canonical variables, leads after much computation, to the 
result that this property of the descriptors will be preserved provided gp0 
satisfies the following commutation relations: 

[-~o-~ g~ J] = \ { g~ g-~176 t g-~ n,(y) ~6) 3(x - y) + a,S(x) 3(x - y) - 

g~ y ) ~g~ O gOO(x ) - 8, gOO(x ) ax ~ ~ ( x -  y) + 

b O + d ~ " ( x ) ~ 3 ( x -  y) +f~ . . . .  (Y)o~ .... ~x  ~3(x-  y) 

(2.19a) 
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g~176 s gSt(x) 0 
[go , = i, (x) y) v, tgOO(x)l a ( x -  y) + 

+ v'[g~176 c~t(x) O~ 3(x - y) + 

+d~, (x )  ~ , ,  0~, 3 ( x -  y) + 
v t g  (x)] 

go~c. ) .~(y)) +(r .... , 

0 0 3 ( x -  y) (2.19b) 
• 0--~"" Ox ~-~ 

{ v / [ g ~ 1 7 6  Ht(Y)}  = { ~ / [ g ~ 1 7 6  3(x  - y )  - a t (x) .~/ [g~176 3 (x  - y )  - 

- b[ (x )  v'[g~176 ~ 3(x - y) (2.19c) 

{'~/[g~176 Hz(y)} = q(x)  3(x  - y)  + g~ (3m m + brain(x)) O ~  3(x  - y)  - 

- g~176 l"(x)  0 - ~  3 (x  - y )  (2 .19d)  

where the various functions denoted by at(x),  a~(x), bt~(x), etc. are arbitrary 
functions of position, but are not to depend on the dynamical variables. We 
have not succeeded in identifying the full range of functionals gp0 of the 
form (2.18) that satisfy these commutation relations. We can, however, 
obtain a partial result by examining the descriptors of the commutator, 
assuming equations (2.19): 

i~ = ~t *1~,t _ *1t ~ t + at~(~t *1 o _ *1t ~o) + c~t(~o,t *1o _ *1otto ) + 

+ d~,,(~t,,..1o _ *it.,, ~o) + h~, . . ,  b(~o ,lo . . . . .  b - .1o ~o . . . . .  b) (2.20a) 

t~o = ~ .1o,~ _ ,18 ~o,, + at(~7' ~o _ ~t .1o) + b[(*1t,, ~o _ ~t,~ .1o) + 

+ lr(~o,,.1o _ *1o, r ~0) (2.20b) 

By inspection tz p is indeed independent of the dynamical variables whenever 
s and .10 are. But in general/~P is not the Lie derivative of ~P and .10. Only 
for the subgroup of the spatial coordinate transformation, i.e. ~:0 = .1o = 0, 
are the commutation relations equations (2.20) completely equivalent to the 
Lie derivatives of the descriptor fields. [Thus the spatial point mappings 
form a subgroup of the group of phase space mappings. In fact it is the 
subgroup generated by the first three constraints, equation (2.9).] If we 
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require the expressions of equations (2.20) to be Lie derivatives under more 
general circumstances, this can be accomplished only by requiring the 
descriptor fields to be the solution of the following equations [obtained by 
equating the coefficients of ~/o in equations (2.20) to ~P,0] 

S 5m s a . . .  ~ , a . . . b  ~ , o = a f l ~ ' +  *'~~ + d ,  ~ , , , - - h  ~ o (2.21a) 

~~ = - a ,  ~t _ b /  ~t,r + F ~o,, (2.21b) 

These represent a set of equations of the first differential order in time (x ~ 
for the propagation of descriptors off the initial space-like hypersurface. 
Because the transformation laws for the metric components gOu involve 
time derivatives of the descriptors, there are no restrictions on the choice of 
descriptors on the initial hypersurface. As the descriptors propagate, so do 
the coordinate conditions (2.18); no additional restrictions are called for. 
But the propagation conditions (2.21) are most difficult to evaluate. Apart 
from the question of whether coefficients at, at s, bt s, etc. can be found such 
that for fixed assignment of them equations (2.21) can be preserved under 
Lie derivation, it is quite clear that descriptor fields determined by such 
first-order equations are much too restricted to contain the full freedom 
available in the group of space-time point mappings, equations (1.2). Thus 
that group is evidently not a subgroup of the group of phase-space mappings 
generated by the Dirac constraints. 

In the next section infinitesimal transformations of the general type (2.3) 
will be examined. For this purpose the canonical formalism is inappro- 
priate; the phase space gmn(x'..-x3), pmn(x' . . .x  3) will be replaced by the 
larger function space gu~(x',.., x 3, x~ 

3. Q-Type Coordinate Transformations 

Transformation groups are basically permutations. A set of elements is 
mapped on itself bi-uniquely; the mappings if appropriately selected form 
a group. In mappings described by equations (2.4) (hereafter referred to as 
C-type) the elements are simply the points of space-time, and the mappings 
are selected to be diffeomorphic. C-type coordinate transformations will, 
incidentally, also map the function space of metric fields on itself, but this 
representation of the group of C-type transformations is relatively cumber- 
some. Each member of the group is, of course, a precise prescription that 
associates with every element P its map P '  regardless of any other infor- 
mation that may be available (such as the metric field). 

The more general transformations described by equation (2.3), (hereafter 
referred to as Q-type), map points on points, to be sure, but the prescription 
associates with a given P a map P '  that also depends on the metric field. 
Hence the set of elements that is being mapped on itself uniquely and 
without adornments is the function space of metric fields. The mappings of 
that function space on itself induced by Q-type coordinate transformations 
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form a transformation group. If  equations (2.2) and (2.6) are combined to 
derive the descriptor of an infinitesimal Q-type transformation from the 
descriptors of the two constituent transformations, one obtains the following 
rule: 

~c"(x) = ~ ,o  se2P -- ~ ,o  ~s ,~ -- f d4 x l ~  tg2~l.x );~ + s~2/3(x');~] -- 
t g/3 

~'2"(x) . . . . .  } 
tr );~ + ~:1 ~(x');~ (3.1) 

In this formulation it is transparent that the commutator reduces to the one 
for C-type transformations if the constituent descriptors are in fact 
independent of the metric. 

In case the dependence of the constituent descriptors on the metric is 
local, equation (3.1) is simplified considerably; if, for instance, the descrip- 
tors are functions of the undifferentiated local values of the g,v(x), then the 
expression (3.1) reduces to 

e .  e o  0~1"~a 0~2" 
~c'U(X) = ~f,p ~2 0 --  g2,p ~1 --  ~ ~.~2~r -~ ~2fl;ct) -}- ~--~fl(~10r "q- ~1~;Cr (3.2)  

The new descriptors are functions not only of the metric at the point with 
the coordinates (x), but of the first derivatives of the metric as well. For local 
dependence, the descriptors of the commutator will always involve 
derivatives of higher order than the descriptors of the constituent infinitesi- 
mal transformations; no local dependence on the metric and its derivatives 
to a finite order will form a group. That is why it is preferable to consider 
in Q-type transformations the primarily non-local (i.e. functional) depen- 
dence of the descriptors on the metric. 

The set of all metric fields may be collected in equivalence classes, each of 
which represents one pseudo-Riemannian manifold in all conceivable 
coordinate systems. Under either C-type or Q-type transformations each 
equivalence class is mapped on itself; it is an invariant subspace of the 
function space of metric fields. Its mappings provide a realization of the 
group of coordinate transformations, which in some cases (the presence of 
isometries) is not faithful. 

Among the pseudo-Riemannian manifolds there are those that are 
solutions of Einstein's vacuum field equations, the Ricci-flat manifolds. 
Without loss of physically valuable generality one may confine one's 
attention to representations involving Ricci-flat manifolds (generally 
without isometries). 

A Ricci-ftat manifold may be represented simply as a metric field t h a t  
obeys Einstein's field equations. An alternative representation is in terms of 
Cauchy data; Dirac (1958, 1959) has cast these into a canonical form. A 
complete set of data consists of the field gm.(X x . . . . .  X3), p""(X 1 . . . .  , X 3) which 
must satisfy at each (three-) point the four Hamiltonian constraints, 
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~ L  =0 ,  ~et~=0 [cf. equations (2.9), (2.10)]. Each such field uniquely 
determines a Ricci-flat manifold, but one-and-the-same Ricci-flat manifold 
may be represented by an infinity of such fields. Given one of them, equiv- 
alent fields may be obtained by changing the coordinatization of the same 
space-like hypersurface, by going over to another hypersurface, or by 
combining these two operations. Infinitesimal changes of this kind are 
generated by the Hamiltonian constraints themselves. Clearly, all possible 
canonical fields may be decomposed into invariant subspaces, or equivalence 
classes, each equivalence class consisting of all canonical fields representing 
the same Ricci-flat manifold. The canonical transformations corresponding 
to the replacement of one canonical field by another belonging to the same 
Ricci-flat manifold permit the construction of transformation groups. 
These transformation groups may be realized (not necessarily faithfully) by 
the transformations within one equivalence class. 

Whereas the equivalence classes of four-dimensional fields and those of 
canonical fields are directly related to each other, the two kinds of repre- 
sentation of Ricci-flat manifolds, and the transformation groups connecting 
them, are not. One four-dimensional metric field may be regarded as a 
congruence of three-dimensional hypersurfaces, and each hypersurface will 
admit a different canonical field which on that hypersurface is adapted to 
the given four-dimensional metric field. Conversely, given a canonical field 
on a hypersurface, there is an infinity of possible four-dimensional co- 
ordinate systems, and hence of metric fields, corresponding to the one 
canonical field on that one hypersurface. 

Consider the phase space of g,,n(x), p""(x), that is to say the function 
space of these fields, and imbedded in it the subspace of canonical fields 
satisfying all of Dirac's Hamiltonian constraints. In that subspace one 
canonical field is represented by a point; a four-dimensional metric field 
corresponds to a one-parametric curve, with the parameter x ~ specified 
along that curve. Whereas canonical transformations map point onto 
point, four-dimensional coordinate transformations map parametrized 
curve onto parametrized curve. Thus the constraint subspace of phase 
space is suitable for representing both four-dimensional Ricci-flat metric 
fields and three-dimensional canonical fields, and one can visualize the 
transformations appropriate to either. 

Point-to-point mappings also map curves onto curves, and will even 
provide a mapping of the corresponding parameters, under the simple 
prescription that the mapping will transfer unchanged the value of x ~ from 
any point to its image. But curve-to-curve mappings are not necessarily 
point-to-point mappings. Within one equivalence class consider two para- 
metrized curves that have one point in common (i.e. two metric fields that 
coincide on one common hypersurface, x ~ = constant, and have their first 
off-surface derivatives in common as well). Their maps need not intersect 
anywhere: hence the original point of intersection has no map at all. A 
point-to-point mapping will map a given point (i.e. canonical field) on a 
specific point, without reference to a curve passing through it. 
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For further discussion of these canonical mappings, independent of their 
realization within the orthodox Hamiltonian formalism, the concept of 
D-invariance (Bergmann, 1962) is of considerable value. Introduced 
originally by Dirac (1958, 1959) (although not by name), D-invariance is a 
property possessed by some, but not all, components of geometric objects 
defined on the four-dimensional space-time manifold. The D-invariant 
components possess the property of remaining unchanged under all those 
four-dimensional coordinate transformations that reduce to the identity 
transformation on the initial space-like hypersurface on which the canonical 
Cauchy data are defined. For instance, the three spatial components 
of a covariant vector are D-invariant, as are the canonical fields g~, and 
p ~ / l .  

Canonical mappings whose descriptors ~, ~L are D-invariant are them- 
selves D-invariant, whereas those mappings corresponding to general 
four-dimensional coordinate transformations are not. This formulation 
recommends itself in that it is independent of the appearance and technology 
of canonical manipulations; the characteristic properties of canonical 
mappings can be examined with the help of the technique exemplified by 
equation (3.1), a technique equally applicable to the most general four- 
dimensional Q-type mappings. 

A D-invariant mapping of a three-dimensional space-like hypersurface on 
a like hypersurface requires information only about the canonical field 
g,,,, p"" on that hypersurface. This information really provides data on two 
disparate sets of circumstances: (I) It identifies the four-dimensional 
Ricci-flat manifold (equivalence class), and (2) it tells on which hypersurface 
we are and how that hypersurface is coordinated. By contrast, a general 
four-dimensional Q-type coordinate transformation requires knowledge of 
the metric field throughout the four-dimensional manifold. In addition to 
specifying the pseudo-Riemannian geometry, this information also 
particularizes the coordinate system chosen throughout that manifold. 

From the foregoing it is clear that we have to deal with three distinct 
types of transformations. The general Q-type coordinate transformations 
form a group in that they map the function space gu~(x~ 3) on itself in 
such a manner that the map of a world point is another world point, 
depending on the whole metric field of the manifold. These mappings are 
transitive only within each invariant subspace (an equivalence class). That 
these transformations form a group, or at least a groupoid, is seen from 
their definition. As a corollary, the infinitesimal mappings form a Lie 
algebra, which is described, e.g. by equation (3.1). 

The C-type transformations form a subgroup of the first group, and the 
Lie algebra of infinitesimal C-type transformations is given by equation 
(2.5); The subgroup is not an invariant subgroup, but within an equivalence 
class (as described above) it is transitive; that is to say, there is a C-type 
transformation transforming any one particular coordinatization of a 
chosen Ricci-flat manifold. It is worth noting that, except for manifolds 
with isometries, there are no non-trivial C-number transformations that 
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map a given metric field on itself; hence (again with the exception of 
isometries) given two coordinatizations there is precisely one C-type 
transformation mapping one on the other. By contrast, there are infinitely 
many such Q-type transformations. 

The canonical coordinate transformations form another subgroup of the 
Q-type transformations. As a Ricci-flat manifold is identified by its Cauchy 
data, canonical coordinate transformations also map each equivalence class 
(of Cauchy data describing one-and-the-same Ricci-flat manifold) on 
itself. Infinitesimal canonical coordinate transformations may be charac- 
terized in terms of their canonical generators, which are linear combinations 
(i.e., three-dimensional integrals over linear combinations) of the Hamil- 
tonian constraints, with the coefficients being D-invariant functionals or, 
equivalently, functionals of the canonical fields gin,, P"" only. The Lie 
algebra of the infinitesimal canonical coordinate transformations may be 
obtained by way of the Poisson brackets between their generators, or, 
alternatively, through equation (3.1). Relating the descriptors appearing in 
that formalism to the coefficients of the Hamiltonian constraints, ~, ~z, by 
the expression (2.12), all four ~ must be D-invariant. The subgroup of 
canonical coordinate transformations again is not an invariant subgroup of 
the Q-type coordinate transformations. Within an equivalence class it is 
transitive, in that it is possible to map any set of canonical Cauchy data for 
a given Ricci-flat manifold on any other like set describing the same Ricci- 
fiat manifold. For any given canonical field there are non-trivial trans- 
formations within the group that map the particular chosen canonical field 
on itself. 

Both the Q-type group and the two subgroups considered here (the C-type 
group and the canonical group) have the same orbits, the equivalence 
classes. Hence an invariant with respect to any of the sub-groups must be a 
constant over the domain of each equivalence class, and therefore an 
invariant with respect to all three groups. 

The Lie algebras of the two infinitesimal subgroups are subalgebras of 
the Lie algebra of the infinitesimal Q-type group, but neither is an invariant 
subalgebra. For proof it suffices to form the commutator between an 
infinitesimal C-number transformation and an infinitesimal canonical 
transformation, a straight-forward operation. In the generic case the 
commutator turns out to belong to neither of these two classes. 

Even the C-type transformations may be considered mappings of 
function spaces on themselves (though these mappings surely are not the 
most convenient representations imaginable). With the C-type transfor- 
mations the world points, and the values of the metric tensor there, represent 
entities that are mapped onto each other, intact. That is to say, under a ~ 
C-type transformation the metric tensor at one world point determines, by 
itself, the metric tensor at the world point that is the image of the first one. 
If we consider the set of all metric fields a fiber bundle, the four-dimensional 
manifold its base, and the variety of all possible metric tensors at one world 
point a fiber, then the C-type transformations map each entire fiber on one 
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entire fiber. In this sense the C-type transformations preserve the identities 
of distinct world points intact. 

Q-type transformations and canonical coordinate transformations do not 
have that property. Consider one world point, with the variety of all possible 
metric tensors at that point. Under a Q-type transformation that world 
point is mapped on another world point, whose identity depends on the 
metric assumed. Given all possible metric fields, but only one Q-type 
transformation, the set of all images of one world point may be quite a large 
point set, a four dimensional variety in the most general case. Essentially 
the same statements hold for canonical coordinate transformations. As we 
are concerned with transformations that form groups, each transformation 
has its inverse; it follows that under Q-type transformations and under 
canonical coordinate transformations one world point may be the image of 
many world points, depending on the assumed metric fields. As world 
point mappings, these transformations are both one-to-many and many-to- 
one, hence non-unique in both directions. 

Because of the equivalence of orbits under all three groups, the invariants 
of a general-relativistic theory are unaffected by the substitution of one 
group for the other. Thus we have here a set of theories with well-understood 
covariance properties, whose invariance group cannot be described as a 
group of transformations mapping a four-dimensional point set on itself. 

4. Concluding Remarks 

To summarize the results of this paper, its principal achievement consists 
of the determination of the mutual relationship of three distinct transfor- 
mation groups, all, and indiscriminately, referred to as coordinate trans- 
formations, with respect to which general-relativistic theories are form- 
invariant. The most general of these transformation groups comprises all 
diffeomorphic mappings of a space-time manifold (whose fields obey the 
field equations) on itself, where the mapping will in general depend on the 
fields defined on the manifold. The other two types of mapping considered 
form subgroups of the first. One is the group of mappings independent of 
the fields; the other consists of mappings that depend on the fields only by 
way of Cauchy data on a hypersurface necessary to define a physical 
situation uniquely and irrespective of the particular four-dimensional 
coordinatization chosen for its description. The properties of the three 
distinctive Lie algebras belonging to these different groups serve to explain 
the apparent paradox inherent in the Poisson brackets discovered by Dirac, 
which are appropriate to the D-invariant mappings but not to the two other 
groups. 

The analysis presented in this paper points to the possible formulation of 
realistic physical theories in which the world point plays no intrinsic role; 
in an appropriate realization such theories might be amenable to a form not 
altogether unlike theories well known today. 
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